79 research outputs found

    Solution of Elasto-Statics Problems Using the Element-Free Galerkin Method with Local Maximum Entropy Shape Functions

    Get PDF
    The element free Galerkin method (EFGM) [1] is one of the most robust meshless methods for the solution of elasto-statics problems. In the EFGM, moving least squares (MLS) shape functions are used for the approximation of the field variable. The essential boundary conditions cannot be implemented directly as in the case of Finite Element Method (FEM), because the MLS shape functions do not possess the Kronecker-delta property and use Lagrange multipliers instead. In this paper the recently developed local maximum entropy shape functions are used in the EFGM for the approximation of the field variable instead of MLS. As the local maximum entropy shape functions possess the Kroneckerdelta property at the boundaries so the essential boundary conditions are enforced directly as in the case of FEM. Two benchmark problems, a cantilever beam subjected to parabolic traction at the free end and an infinite plate with circular hole subjected to unidirectional tension are solved to show the implementation and performance of the current approach. The displacement and stresses calculated by the current approach show good agreement with the analytical results

    Nonlinear solid mechanics analysis using the parallel selective element-free Galerkin method

    Get PDF
    A variety of meshless methods have been developed in the last fifteen years with an intention to solve practical engineering problems, but are limited to small academic problems due to associated high computational cost as compared to the standard finite element methods (FEM). The main objective of this thesis is the development of an efficient and accurate algorithm based on meshless methods for the solution of problems involving both material and geometrical nonlinearities, which are of practical importance in many engineering applications, including geomechanics, metal forming and biomechanics. One of the most commonly used meshless methods, the element-free Galerkin method (EFGM) is used in this research, in which maximum entropy shape functions (max-ent) are used instead of the standard moving least squares shape functions, which provides direct imposition of the essential boundary conditions. Initially, theoretical background and corresponding computer implementations of the EFGM are described for linear and nonlinear problems. The Prandtl-Reuss constitutive model is used to model elasto-plasticity, both updated and total Lagrangian formulations are used to model finite deformation and consistent or algorithmic tangent is used to allow the quadratic rate of asymptotic convergence of the global Newton-Raphson algorithm. An adaptive strategy is developed for the EFGM for two- and three-dimensional nonlinear problems based on the Chung & Belytschko error estimation procedure, which was originally proposed for linear elastic problems. A new FE-EFGM coupling procedure based on max-ent shape functions is proposed for linear and geometrically nonlinear problems, in which there is no need of interface elements between the FE and EFG regions or any other special treatment, as required in the most previous research. The proposed coupling procedure is extended to become adaptive FE-EFGM coupling for two- and three-dimensional linear and nonlinear problems, in which the Zienkiewicz & Zhu error estimation procedure with the superconvergent patch recovery method for strains and stresses recovery are used in the FE region of the problem domain, while the Chung & Belytschko error estimation procedure is used in the EFG region of the problem domain. Parallel computer algorithms based on distributed memory parallel computer architecture are also developed for different numerical techniques proposed in this thesis. In the parallel program, the message passing interface library is used for inter-processor communication and open-source software packages, METIS and MUMPS are used for the automatic domain decomposition and solution of the final system of linear equations respectively. Separate numerical examples are presented for each algorithm to demonstrate its correct implementation and performance, and results are compared with the corresponding analytical or reference results

    Three-dimensional FE-EFGM adaptive coupling with application to nonlinear adaptive analysis

    Get PDF
    Three-dimensional problems with both material and geometrical nonlinearities are of practical importance in many engineering applications, e.g. geomechanics, metal forming and biomechanics. Traditionally, these problems are simulated using an adaptive finite element method (FEM). However, the FEM faces many challenges in modeling these problems, such as mesh distortion and selection of a robust refinement algorithm. Adaptive meshless methods are a more recent technique for modeling these problems and can overcome the inherent mesh based drawbacks of the FEM but are computationally expensive. To take advantage of the good features of both methods, in the method proposed in this paper, initially the whole of the problem domain is modeled using the FEM. During an analysis those elements which violate a predefined error measure are automatically converted to a meshless zone. This zone can be further refined by adding nodes, overcoming computationally expensive FE remeshing. Therefore an appropriate coupling between the FE and the meshless zone is vital for the proposed formulation. One of the most widely used meshless methods, the element-free Galerkin method (EFGM), is used in this research. Maximum entropy shape functions are used instead of the conventional moving least squares based formulations'. These shape functions posses a weak Kronecker delta property at the boundaries of the problem domain, which allows the essential boundary conditions to be imposed directly and also helps to avoid the use of a transition region in the coupling between the FE and the EFG regions. Total Lagrangian formulation is preferred over the updated Lagrangian formulation for modeling finite deformation due to its computational efficiency. The well-established error estimation procedure of Zienkiewicz-Zhu is used in the FE region to determine the elements requiring conversion to the EFGM. The Chung and Belytschko error estimator is used in the EFG region for further adaptive refinement. Numerical examples are presented to demonstrate the performance of the current approach in thre

    Multiscale modelling of the textile composite materials

    Get PDF
    This paper presents an initial computational multiscale modelling of the fibre-reinforced composite materials. This study will constitute an initial building block of the computational framework, developed for the DURCOMP (providing confidence in durable composites) EPSRC project, the ultimate goal of which is the use of advance composites in the construction industry, while concentrating on its major limiting factor ”durability”. The use of multiscale modelling gives directly the macroscopic constitutive behaviour of the structures based on its microscopically heterogeneous representative volume element (RVE). The RVE is analysed using the University of Glasgow in-house parallel computational tool, MoFEM (Mesh Oriented Finite Element Method), which is a C++ based finite-element code. A single layered plain weave is used to model the textile geometry. The geometry of the RVE mainly consists of two parts, the fibre bundles and matrix, and is modelled with CUBIT, which is a software package for the creation of parameterised geometries and meshes. Elliptical cross sections and cubic splines are used respectively to model the cross sections and paths of the fibre bundles, which are the main components of the yarn geometry. In this analysis, transversely isotropic material is introduced for the fibre bundles, and elastic material is used for the matrix part. The directions of the fibre bundles are calculated using a potential flow analysis across the fibre bundles, which are then used to define the principal direction for the transversely isotropic material. The macroscopic strain field is applied using linear displacement boundary conditions. Furthermore, appropriate interface conditions are used between the fibre bundles and the matrix

    Stochastic multi-scale finite element based reliability analysis for laminated composite structures

    Get PDF
    This paper proposes a novel multi-scale approach for the reliability analysis of composite structures that accounts for both microscopic and macroscopic uncertainties, such as constituent material properties and ply angle. The stochastic structural responses, which establish the relationship between structural responses and random variables, are achieved using a stochastic multi-scale finite element method, which integrates computational homogenisation with the stochastic finite element method. This is further combined with the first- and second-order reliability methods to create a unique reliability analysis framework. To assess this approach, the deterministic computational homogenisation method is combined with the Monte Carlo method as an alternative reliability method. Numerical examples are used to demonstrate the capability of the proposed method in measuring the safety of composite structures. The paper shows that it provides estimates very close to those from Monte Carlo method, but is significantly more efficient in terms of computational time. It is advocated that this new method can be a fundamental element in the development of stochastic multi-scale design methods for composite structures

    Multi-scale computational homogenisation to predict the long-term durability of composite structures

    Get PDF
    A coupled hygro-thermo-mechanical computational model is proposed for fibre reinforced polymers, formulated within the framework of Computational Homogenisation (CH). At each macrostructure Gauss point, constitutive matrices for thermal, moisture transport and mechanical responses are calculated from CH of the underlying representative volume element (RVE). A degradation model, developed from experimental data relating evolution of mechanical properties over time for a given exposure temperature and moisture concentration is also developed and incorporated in the proposed computational model. A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear Dirichlet, uniform Neumann and periodic boundary conditions. A plain weave textile composite RVE consisting of yarns embedded in a matrix is considered in this case. Matrix and yarns are considered as isotropic and transversely isotropic materials respectively. Furthermore, the computational framework utilises hierarchic basis functions and designed to take advantage of distributed memory high performance computing
    corecore